The Accelerating Universe & Dark Energy

Alex Kim Lawrence Berkeley National Laboratory

Interesting Physics

Sc f**Br**eakth

The Ac

Spectroscopy

Redshift

Faint nebulae (galaxies) were observed to
have the same spectral lines shifted with
respect to their bright counterparts
Wavelength

The shift is wavelength independent described by the "red hift" \tag{\tag{\tag{red hift" \tag{\tag{\tag{red hift" \tag{\tag{red hift" \tag{\tag{red hift" \tag{\tag{red hift" \tag{\tag{red hift" \tag{\tag{red hift" \tag{red hift" \tag{\tag{red hift" \tag{red hif

$$\frac{\lambda}{\lambda_0} = 1 + z$$

At the timp, interpreted as radial velocity

Hubble Law

A linear relationship between galaxy redshift (velocity) and brightness (distance)

Fig. 4.—Correlation between the quantities actually observed in deriving the velocity-distance relation. Each point represents the mean of the logarithms of the observed red-shifts (expressed on a scale of velocities) for a cluster or group of nebulae, as a function of the mean or most frequent apparent photographic magnitude.

$$d = H_0 \frac{v}{c}$$

Hubble & Humason (1931)

Feature of the Hubble Law

The Age of the Universe?

- When was the Big Bang if we use this linear extrapolation?
- H0=558 ± 10% km/s/Mpc (Hubble & Humason 1931)
 - o Age of the Universe is 1.75 Gyr
- \circ $H0=71\pm3$ km/s/Mpc (Eidelman et al. 2004)
- o Systematic errors are important!

Gravity and Acceleration

Fig. 4.—Correlation between the quantities actually observed in deriving the veloc-

ity-distance relation. Each point represents the mean of the logarithms of the observed red-shifts (expressed on a scale of velocities) for a cluster or group of nebulae, as a

function of the mean or most frequent apparent photographic magnitude.

The force of
 gravity should
 provide some
 kind of
 acceleration, not
 a constant
 velocity

 Seen through the deviation from the linear Hubbl law

Distance (-> Time)

Standard Candle: Type Ia Supernovae

- o Defined empirically as supernovae without Hydrogen but with Silicon
- Progenitor understood as a C/O White Dwarf accreting material from a binary companion
- As the White Dwarf reaches Chandrasekhar mass, a thermonuclear runaway is triggered
- A natural triggered and standard bomb

Type Ia Supernovae as Standard Candles

- After correction for foreground dust, supernovae have peakmagnitude dispersion of 0.25 - 0.3 magnitudes
- After correction for lightcurve shape supernovae become "calibrated" candles with ~0.15 magnitude dispersion

Supernova Results

Look for new results soon from SNLS!

Cosmology Theory

- Kinematics to Dynamics
- Cosmological principle: a homogeneous and isotropic Universe can be described by a single function, the scale factor a(t)
- o Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2} \right]$$

 \circ k = -1, 0, 1 for open, flat, or closed geometries

Friedmann Equations

• Combine R-W metric and General Relativity to give the equations of motion for a(t)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} (\rho + 3p)$$
 "Newton's Law of Gravitation"

$$\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi G}{3}\rho - ka^{-2}$$
 "Conservation of Energy"

- ρ Energy density of the Universe's constituents
- p Pressure of the Universe's constituents

$$p < -\frac{\rho}{3} \to \frac{\ddot{a}}{a} > 0$$

Acceleration

Normal vs Strange

 Solve Friedmann Equations depending on what the Universe is made of (k=0)

Non-relativistic matter:

$$\rho \propto a^{-3}; p = 0 \to a(t) \propto t^{2/3}$$
 $\ddot{a} < 0$

Radiation:

$$\rho \propto a^{-4}; p = \frac{\rho}{3} \to a(t) \propto t^{1/2}$$
 $\ddot{a} < 0$

Dark Energy:

$$\rho \propto a^{-3(1+w)}; p = w\rho \to a(t) \propto t^{\frac{2}{3(1+w)}}$$

$$\ddot{a} > 0 \text{ if } w < -\frac{1}{3}$$

Cosmological Constant w=-1:

$$\rho \propto a^0; p = -\rho \to a(t) \propto e^{Ht} \quad \ddot{a} > 0$$

Fit data with the free parameters: ρ_x , k, and w

Common Notation

- Parameterize w
 - \circ w(a) = w = constant
 - $\circ w(a) = w_0 + w_a(1-a)$
- $\circ \ \Omega_X = \frac{8\pi G \rho_X}{3H_0^2} \ dimensionless \ energy \ density$

Connection to Hubble Diagram

- Redshift due to adiabatic expansion of the Universe $\frac{a_0}{a} = (1+z)$
- o Brightness

$$f = \frac{L}{4\pi (1+z)^2 d(z)^2}$$

$$d(z) = \int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)}; k = 0$$

$$= \sin^{-1} \left(\int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)} \right); k = 1$$

$$= \sinh^{-1} \left(\int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)} \right); k = -1$$

Supernova Results

Concordance

Implications of an Accelerating Universe

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} (\rho + 3p)$$

o The ene

MATTER:
$$p = 0 \longrightarrow \rho \propto R^{-3}$$

lominated

Why

VACUUM ENERGY: $p = -\rho \rightarrow \rho \propto constant$

Might expect $\Lambda \sim m_{\rm Planck}^4$ energy This is off by denoted b

vacuum

Moujica Oraviry

energy density

energy density

time

Gravitational Lensing

Review of Weak Lensing

Weak lensing
requires the
measurement of
many galaxy shapes
to extract average
trends

Courtesy of Gary Bernstein

Dark Energy Signals in the WL Sky

Courtesy of Gary Bernstein

Redshift to Distance

$$d(z) = \int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)}; k = 0$$

$$= \sin^{-1} \left(\int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)} \right); k = 1$$

$$= \sinh^{-1} \left(\int_0^z \frac{dz'}{H(z'; \Omega_X, w_0, w_a)} \right); k = -1$$

Dark Energy Signals in the WL Sky

Courtesy of Gary Bernstein

Mass fluctuations that produce lensing

Cosmic Microwave Background

Universe is filled with radiation

Thermal Universe

- o The Universe used to be a lot hotter
 - $\circ T \propto a^{-1}$ adiabatically expanding Universe
 - The Universe was a plasma of protons, electrons, and photons
 - At z~1000 (T~3000 K) neutral Hydrogen formed (recombination) photons no longer coupled to matter
 - CMB photons streaming to us from the surface of last scattering

Temperature Map

Precision measurements show Temperature fluctuations

$$\frac{dT}{T} \sim 10^{-5}$$

Temperature Fluctuations = Energy Density Fluctuations

- o Temperature fluctuations are due to energy density fluctuations ($\delta = d\rho/\rho$)
 - Acoustic compression
 - Gravitational redshift
 - Doppler effect

Density Fluctuations Grow

- Radiation pressure turns off after recombination, matter is free to cluster gravitationally
- Evolution of density perturbations

$$\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}}$$

$$\ddot{\delta} + 2H(z; \Omega_X, w_0, w_a)\dot{\delta} - \frac{3}{2}\Omega(z)H^2(z; \Omega_X, w_0, w_a)\delta = 0$$

CMB as an initial condition + dark-energy-dependent clustering characterize the lensing mass

Dark Energy Signals in the WL Sky

Courtesy of Gary Bernstein

Dark Energy Lensing Results

From a 75 square degree survey from CTIO

SNAP Collaboration

Section provide the second of the second of

INSTITUT NATIONAL DES SCIENCES

M. Bester, E. Commins, G. Goldhaber, H. Heetderks, P. Jelinsky, M. Lampton, E. Linder, D. Pankow, M. Sholl, G. Smoot, C. Vale, M. White

Caltech

J. Albert, R. Ellis, R. Massey[†], A. Refregier[†], J. Rhodes, R. Smith, K. Taylor, A Weintein

Fermi National Laboratory

J. Annis, F. Delongh, S. Dodelson, T. Diehl, J. Frieman, D. Holz[†], L. Hui, S. Kent, P. Limon, J. Marriner, H. Lin, J. Peoples, V. Scarpine, A. Stebbins, C. Stoughton, D. Tucker, W. Wester

Indiana U.

C. Bower, N. Mostek, J. Musser, S. Mufson

IN2P3-Paris -Marseille

P. Astier, E. Barrelet, R. Pain, G. Smadja[†], D. Vincent

IPL LAM (France)

S. Basa, R. Malina, A. Mazure, E. Prieto

B. Bigelow, M. Brown, M. Campbell, D. Gerdes, W. Lorenzon, T. McKay, S. McKee,

M. Schubnell, G. Tarle, A. Tomasch

University of Pennsylvania

Stockholm

SLAC

G. Bernstein, L. Gladney, B. Jain, D. Rusin

University of

R. Amanullah, L. Bergström, A. Goobar, E. Mörtsell

W. Althouse, R. Blandford, W. Craig, S. Kahn, M. Huffe Snorphalbl. 20V

SNAP Telescope

- o 2-m primary aperture, 3-mirror anastigmatic design.
- o Provides a wide-field flat focal plane.

Instrumentation: Imager

- camera (0.7 square degrees) provides multiplexed supernova discovery and followup.
 - Covers wavelength region of interest, 0.35 – 1.7 microns.
 - Fixed filter mosaic on top of the imager sensors.
 - 3 NIR bandpasses.
 - 6 visible bandpasses.
 - Coalesce all sensors at one focal plane.
 - 36 2k x 2k HgCdTe
 NIR sensors covering
 0.9–1.7 μm.
 - 36 3.5k x 3.5k CCDs

mm

37

Spectrograph

- o Integral field unit based on an imager slicer- Data cube.
- o Input aperture is 3" x 3" reduces pointing accuracy requirement
- Simultaneous SNe and host galaxy spectra.
- o Internal beam split to visible and NIR.

Why Space?

Sky emission the dominant source of noise

Resolution

Simulated Light Curves

PSF Number counts vs size

Finer PSF
resolves more
galaxies at higher
redshifts

PSF Instability

courtesy of J. Rhodes

2 PSF maps taken minutes apart on Keck. The pattern of PSF anisotropy has changed dramatically. Corrections on scales smaller than the star-star separation are not possible. This is likely a fundamental limit from the ground due to thermal instability.

Cosmological Parameter Determination

Cosmological Parameter Determination

• Shown is the w_0 , w' confidence region of this Monte Carlo realization of the SNAP experiment. There is a prior on Ω_M and 300 low-z SNe. An irreducible systematic is included.

National Academy of Sciences

Dangetment of Fueron

NASA-DOE Joint Dark Energy Mission

Paul Hertz / NASA Robin Staffin / DOE

Endorsed by

Raymond L. Orbach Director of the Office of Science Department of Energy September 24, 2003 Edward J. Weiler
Associate Administrator for Space Science
NASA
September 25, 2003

OSTP

URY FRONTIER FOR DISCOVERY
ICS OF THE UNIVERSE

PLAN FOR FEDERAL RESEARCH HE INTERSECTION OF SAND ASTRONOMY

Conclusion

